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Geometric Phase Shift for Detection of 
Gravitational Radiation 

N. V. Mitskiev ich  ~ and A. I. Nesterov  2~ 

Received June 4, 1996 

A geometrical phase shift is predicted for a light beam propagating in the field 
of a gravitational wave. Gravitational radiation detection experiments are proposed 
using this new effect, and the corresponding estimates are given. 

I. I N T R O D U C T I O N  

Berry (1984) showed that for a quantum system whose Hamiltonian 
H(~) depends on some parameters ~ and which evolves in time in such a 
way that during the evolution the state of  the system traces out a closed 
curve C in the space of  these parameters, the wave function can get an 
additional geometrical phase 0(C). This geometric phase depends on the 
motion of  the system in the space of  parameters. 

A rotation of  the polarization vector was predicted (Chiao and Wu, 
1986) for a linearly polarized laser beam traveling along a single helically 
wound optical fiber; the results were experimentally confirmed and their 
connection with Berry's phase (Tomita and Chiao, 1986) shown. Later it was 
found (Cai et  al. ,  1990) that Berry's phase has in fact a classical origin and 
arises from the intrinsic topological structure of Maxwell 's theory if the 
Minkowski space-time is considered as a background. If k is the wave vector 
of an electromagnetic wave and e(k) its complex polarization vector, then 
the condition k 2 = to2(k) = const determines a sphere 5 "2. The angle 0(k) of 
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rotation of e(k) when it is parallely transported along a null geodesic with 
the tangent four-vector k is defined by 

80 = /eL(k)'deR(k) 

where 

eR = 2-1/2(el + ie2), eL = 2-~/2(e~ -- ie2), eL X eR = ik/to 

and e = e-/~ The integral angle is 0 = f 80, where integration is performed 
over the path of k on $2; thus 0 has a geometric origin. When the curve is 
a closed path C on S a, the angle 0(C) is given by 0(C) = -I I (C) ,  where 
fI(C) is the solid angle of the loop C with respect to the center of the sphere. 
The above expression is essentially a flat space-time expression (Cai et  al.,  
1990), although applicable also to general relativity (Bildhauer, 1990). 

In a second example of Berry's phase in optical experiments (Pancharat- 
nam, 1956), the state space is the Poincar6 sphere which describes all possible 
polarization states of light. For this case the direction of the light propagation 
is fixed and a cycle of changes in polarization states corresponds to a closed 
curve on the Poincar6 sphere (see, e.g., Bhandari and Manuel, 1988; Simon 
et al., 1988). The phase 0(C) is known as the Pancharatnam phase (Pancharat- 
nam, 1956) and is given by 0(C) = -(I/2)I-I(C). 

Here we predict a similar geometrical phase shift for light beams propa- 
gating in the field of a gravitational plane wave or pulse of gravitational 
radiation (1) cyclically from and (after reflection) to an observer, thus being 
closely related to the Pancharatnam phase, and (2) along a circular fiber of 
radius R0. We show that for a light beam orthogonal to the direction of 
propagation of a gravitational wave, this phase grows proportionally to L/h, 
where L is distance between the observer and reflecting system and h is the 
characteristic wavelength of the gravitational wave packet. In the second case 
if h = ~rR0, resonance occurs and the phase shift grows proportionally to m, 
the number of revolutions of light. For a pulse of gravitational radiation, the 
relative phase shift is proportional to the characteristic amplitude of the pulse 
in either of these two cases [for preliminary results see Mitskievich and 
Nesterov (1995)]. 

In this paper we use the space-time signature (+ 1, - 1, - 1, - 1); Greek 
indices run from 0 to 3 and Latin from 1 to 3; it is essential to remember 
these notations when the integration by parts is performed [see (4) and, in 
the Appendix, (A9)]. 

2. GENERAL RESULTS 

A concise description of this phenomenon can be done using the New- 
man-Penrose formalism, which is applicable to the propagation of light in 
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arbitrary media [we are interested here in the cases of (1) a vacuum and (2) 
an optical fiber, both in a gravitational field]. The real null Newman-Penrose 
vectors are l = (k ~ k) (tangent to the light world line) and n ( l . n  = 1); the 
complex ones are m and ~ (m. ~ = -1 ) .  We shall consider m = e-10eR tO 
be the circular (fight) polarization vector. When light propagates along optical 
fibers (not necessarily geodesically), the Newman-Penrose description is 
quite essential for differentiation along l, D = Vt being a Newman-Penrose 
operator. The corresponding equations reduce to 

DI = (e + -~)I - -~m - K-~ 

Dn  = - ( e  + ~)n + ~rm + ~rm 

D m  = ~ l  - K-~ + (e - E)m 

The coefficients in the right-hand side of these equations are in general 
complex functions (a bar denoting complex conjugation); e - ~ determines 
torsion and K the curvature of the spacelike trajectory of light (an optical 
fiber) (Penrose and Rindler, 1986, pp. 169ff). The change of polarization 
angle generally reads 

O = i l e L . D e R  d'q + f (~ - e) d'q 

In a vacuum, a light beam propagates geodesically, thus DI = 0, and 
the equation of the polarization vector transport reads D m =  0 (Penrose and 
Rindler, 1986); these two equations yield also Dn = 0. For a planar optical 
fiber, D m  = ~ l  - K'~. Hence in both cases ~ - D m  = 0, thus 

0 = i fr eL'DeR dxl (1) 

the integration being performed along the light world line F canonically 
parametrized by "q. For the left polarization one has to exchange subscripts 
L and R in (1), or, equivalently, to change the sign in the fight-hand side o f  

this equation. 
Note that under parallel transport along the spacelike geodesics orthogo- 

hal to the observer's world line % the vector of fight (left) polarization eR 
(eL) does not change, but it changes under the transport along F (the null 
line of light whose characteristics are measured in the course of the proposed 
experiment). This very fact makes the existence of nontrivial phase 0 essential. 

If we intend to consider an experiment to detect gravitational radiation, 
it is natural to connect the Newman-Penrose frame with the Fermi coordinates 
X ~ = ~ s  + ~,~f;iu (see, e.g., Manasse and Misner, 1963; Misner et  al., 1973). 
Here s is the proper time along the observer's geodesic world line 7, u being 
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the proper length parametrizing the (spacelike) geodesic orthogonal to it, 
with a unit tangent vector ~ on ~. In fact, ~ describes the direction in which 
such a spacelike geodesic goes, and it possesses only spatial components 
different from zero (the temporal coordinate X ~ = T is directed along 3'). In 
Fermi coordinates, components of the corresponding orthonormal tetrad 
e~~) parallely transported along the spacelike geodesic are represented as 
expansions 

1 ~,~oXiXJ + . . .  e~o) = ~ - -~ 

1 
e~p) = ~g - -~ R ~ p X i X  j at- "." 

and the connection coefficient (Christoffel symbols) take the form 

F~o = k ~ 0 X ;  + . . -  

F ~ =  2 0  , + . . .  

Quantities of the type of Q are taken on ~. 
The radius of convergence of the series is determined by the conditions 

(Manasse and Misner, 1963) 

Uo < <  min~ . 1 I~ ~'~131 ~ (2) 
[I R~,.Isl31 It2, i R,~.yal 3 i l j 

The first condition u0 < <  I/~,~.tal31-it2 determines the size of V where the 
curvature has not yet caused spatial geodesics to cross each other. The second 
condition defines the domain where the curvature does not change essentially. 
For instance, for gravitational waves with wavelength "q the Riemann tensor 
is ~ A  e x p ( i k ~ x ~ ) l h  2, where A is the dimensionless amplitude. So equation 
(2) yields 

Uo < <  min{M4~, h} 

Generally it is assumed that A --< 10 -*s. This means that the size of V is 
restricted by u0 < <  k. So the application of Fermi coordinates to modem 
experiments may be very restrictive since h is often supposed to be of the 
order of 300 km. Thus to enlarge the range of validity by a factor 1/x/A 
(which is about 109 in our example) it is necessary to take into account all 
derivatives of the Riemann tensor. 

Covariant derivatives of the Fermi basis can be described as (see the 
Appendix) 
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V0xe~) = - r ~ , ~  p dx + 1 d'f ~R~ip~'  dr '  + O(R 2) (3) 
u 

where integration is performed along a spacelike geodesic orthogonal to the 
Fermi observer world line ~/. This integral formula obviously includes all 
derivatives of the Riemann tensor. We shall apply equation (3) for the calcula- 
tion of  the phase shift (1). 

Using (3), we find from (1) 

0 = - i  e~e~l ~ agt R ~ p ~ '  d'r 

fofo + i 1 e~e~ dxl d'r R~ipli~ p dr '  + O(R 2) 
u 

Integrating by parts, we obtain 

Io 0 = - i  e~e~fl d~l R~op~' d'r 

f0 + i I e~e~li d~  R~ip~"r d'r + O(R 2) (4) 

We consider now a plane weak gravitational wave whose metric tensor 
is usually written in synchronous coordinates, 

ds 2 = "q~ dr  ~ dx  ~ + h.b d f  dx  ~ 

where a and b run from I to 2, while 

hab = hab(t  - -  Z), h22 = - h t t  = h+, hi2 = hx 

Using the definition of  the Riemann tensor 

l 
Re.x,, = ~ (h.~,r + h~,,,~x - hcx,~,,~ - h~.~,.D 

we find that in the lineaxized theory nonzero components of  Riemann ten- 
sor are 

1 
R3ab3 = Ro.bo = --R3abO = "~ h'ab, RIL22 v ~- - g l . e l l v  , g l~12v  = gl~21 ~ 

(5) 

where a dot indicates derivative with respect to t. Now equation (4) is 
readily applicable, and two typical cases emerge: (A) parallely (antiparallely) 
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propagating gravitational and light waves and (B) mutually orthogonal waves. 
Below we study both cases. 

2.1. Parallely (Antiparallely) Propagating Gravitational and Light  
Waves 

We assume that the both waves propagate along the z axis. One can 
write l = /~ 0, 0, +__1), where/0 = dTId 'q;  the upper sign corresponds to 
the positive direction propagation of light and the lower sign to the negative 
direction. Let us take 

1 1 
eL = ~ (0, 1, i, 0), e~ = - ~  (0, 1, - i ,  0) 

Equation (4) reduces to 

0 = - d r  Ri2ob~ b d r '  _+ Ri23b~b'r ' d'r' + O(R 2) (6) 
30 

Applying (5), we find 0 = 0, which means absence of a phase shift. 

2.2. Orthogonally Propagating Gravitational and Light Waves 

Let the gravitational wave propagate along the z axis and the light beam 
propagate in the (x, y) plane at an angle do to x axis. We suppose 

= (0, cos dO, sin dO, 0), 1 =/~  ___cos dO, _+sin dO, 0), l ~ = dT/d ,q  

(7) 

where we used (5). It is convenient to rewrite this equation as 

0 = _ T _ l / f  ff(T) d'r (h• cos 2do + 1/+ sin 2do) d'r + (~(R 2) (10) 

Taking into account that X ~ = x~ + (~(h) and h = h ( t  - z)  (h  being h+ or 
h• one can write (10) as 

[R312o(COS2~b - sin2d~) + 2R3220 sin do cos do] dr '  (9) 

+ O(R 2) 

1 1 
eL = - '~  (0, -T-sin do, ___cos do, i), e~ = ~ (0, -T-sin do, _+cos do, - i )  

(8) 
where the upper sign corresponds to propagation of light from the observer 
and the lower one to propagation to the observer. Then the phase shift (4) 
is given by 

0 = _ +  d x  
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0 =  ~ l l o  [/~• cos 2~b + h§ sin 2~b]u('r) d'r + O(R 2) (11) 

Let us define 0 = ta+ sin 2d~ + tax cos 2~b, where ta+ and tax correspond to 
the two independent polarization modes of the gravitational wave (see, e.g., 
Misner et al., 1973). Then (for ta+ or tax) 

a = -v-~ //('r)u(-r) d r  + ~(R 2) (12) 

where h is h+ or h• Integration by parts with du = ++_dr yields 

1 
ta = ~ [h('r) -T- h(,r)u(-r)] I r 

where, as above, the upper sign corresponds to the propagation of (right 
polarized) light from the observer, and the lower one to the observer. For 
the left polarized light the overall sign of the right-hand side of the last two 
equations should be changed. 

Let us consider an experiment where a circularly polarized electromag- 
netic wave is traveling between the observer and a reflecting system in the 
(x, y) plane, the gravitational wave propagating in the positive direction of 
the z axis. If (say, right) polarization does not change in the course of 
reflection, the phase shift is 

1 Ata, = ~ [h(2T) - h(0) - 2Th(T)] (13) 

and if polarization changes to the left one, 

1 
a a 2  = ~ [2h(T) - h(2T) - h(0)] (14) 

(the effects for an initially left polarized beam have inverse signs). 
For multiple reflections we have 

11 ] Aotl(N) = ~ h((N + I)7) + h(NT) - h(T) - h(O) - 2T ~ h(mT) (15) 
r a = l  

1 
mot2(N ) = ~ [h(NT) - h((N + 1)T) + h(T) - h(0)] (16) 

where N is the number of  reflections. 
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For a plane monochromatic gravitational wave, h ( t  - z )  = A cos[to(t 
- z) + 8], where A is a dimensionless amplitude. In this case (15) and (16) 
are rewritten as 

Acxl(N) = A(A - sin A) sin[(N/2)A] sin[(N + I)A/2 + 8] (17) 
sin(M2) 

A~2(N) = 2A sin ~- sin ( cos --  A + 18) 

Here A = 2~rL/h, with L the distance between the observer and reflecting 
systems and h is the gravitational wavelength. 

The average relative phase shift between the right and left polarized 
light is 

A (A sin[(N/2)Al 
~ )  = - sin A) sin(M2) (19) 

2A sin A _.~ ~ --- ~- sin (20) 

,4 = (A. 2 + A~1/2 is the dimensionless amplitude of  an unpolarized gravitational 
wave, and averaging is performed with respect to all polarizations and phases 
~+ and gx. 

We shall consider here no phase change in the course of reflection, since 
this is the only way to obtain a sensible integral effect. If A > >  1, then, for 
instance, for N = 1, we obtain 

= AA (21) 

We see that effectively the dimensionless amplitude A grows by a factor A. 
When N > >  1, we find that the maximum phase shift 

= 2 " r r m N A  (22) 

occurs for A = 2~rm, where m is integer. If A < <  1, we obtain 

_- sin(. ) (23) 

and the relative shift takes its maximum value, 

,/(A02) = 2A (24) 

when NA = xr. 
Another possible experiment involves a scheme similar to that of  Bragin- 

ski and Menskii (1971), but with measurement of the geometric phase shifts 
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for right and left polarizations [and not the frequency shift as in Braginsky 
and Menskii (1971)] of light traveling along a circular fiber of radius Ro. Let 
us consider the case when a plane gravitational wave is propagating in the 
positive direction of the z axis, the fiber lies in the (x, y) plane, and the light 
propagates in a counterclockwise direction. We suppose 

= (0, cos ~b, sin ~, 0), l = /o(1, - s i n  ~, cos ~b, 0), /o = dT/&q 
(25) 

1 1 
e~ = - ~  (0, cos d~, sin ~b, i), e~ = - ~  (0, cos ~, sin ~, - i )  (26) 

Then the phase shift is given by 

I; 0 = R ~ R3abo~a('r)l~~ d'r + ~(R 2) 

- 2 }/.b('r)~"('r)~b('r) d'r + 6(R 2) (27) 

where we used equation (5). Defining 0 = ~§ + ax,  we obtain 

~§ = ~- J/§ cos(2too'r) d'r + O(R 2) 

~x - 2 Jix('r) sin(2too'r) d'r + O(R 2) 

where too = 2~1To, and To is the period of revolution of light. Integration 
by parts with h('r) = A cos(to'r + 8), where, as above, A is dimensionless 
amplitude, yields 

.~+{, to ,,'~[sin((to~ to/2)T)cos(( too- to l2 )T-  8+) 
or+ \~o/L 1 - 2(too/to) 

sin((too + to/2)T) cos((too + to/2)T - 8+)] 
(28) / 1 + 2(todto) 

to ,, rsin((to~ + to/2)  sin((too + to/2)r + 8• 
~ •  \2-~o/L I + 2(todto) 

sin((to0 - to/2)T)sin((to0 - to l2)T-  8x)]  

- T = 2~-~-~ / (29) 
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For left polarized light, the overall sign of the right-hand side of the last two 
equations should be changed. The average relative phase shift between right- 
and left-polarized light is 

Ata fsin2 o+  /2)T 
2v/2 too [_ [1 + 2(OJo/O~)] 2 

sin(too - o~12)T sin(tao + co/2)T cos(2~T) 
+ 2  

l - -  ( 2 t O 0 / t O )  2 

1/2 
sin2(to0 - to/2)T] 

+ J 
(3O) 

When the gravitational wavelength "q is equal to afRo, a resonance occurs 
leading to (A02) u2 = 2u2armA, where m is the number of revolutions of light. 
It is clear that such a detector is effective for high-frequency gravitational 
radiation, the corresponding Ro being around 100 km for 103 Hz. A consider- 
ably smaller detector size could be achieved for a toroidol winding of  the 
fiber, and this case is currently under consideration. However, measurements 
of the phase shift in a fiber (and in any medium other than a good vacuum) 
could be virtually impossible due to the random fluctuations, so that we 
consider here these cases for the sake of completeness only. 

3. DISCUSSION AND CONCLUSION 

We discuss the possibility of detecting gravitational radiation based on 
the proposed new effect. Let us consider the case A > >  1. From (21) we 
obtain (A02) In ~ 2 • lO-SALv, where v is characteristic frequency of the 
gravitational radiation in Hz and L is the distance in km. It is clear that such 
a detector is effective for high-frequency gravitational radiation (v -- 104 
Hz). If, for instance, the reflecting system is placed on the surface of the moon, 
we have (A02) It2 - 8Av. For the 5 million-km-long Laser Interferometer Space 
Antenna (LISA), which would fly in heliocentric orbit (Thorne, 1995a,b), 
our estimation of the phase shift is (A02)  1/2 ~ 102Av.  

Let us compare the experiment proposed here with the standard experi- 
ments involving resonant antennas directed to the Virgo cluster and tuned to 
some 3000 Hz. In this case A ~ 10 -20 [see the corresponding data in Douglas 
and Braginsky (1979) and Thome (1995a,b)]. So the geometrical phase detec- 
tor with the base earth-moon treats this radiation as if it had an effective 
magnitude of some l0 -16 and for LISA as if it had an effective magnitude 
of s o m e  10 -14. 
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For experiments using a laboratory-size apparatus, A < <  1, we see that 
(A02) 1/2 - 2AIsin(NA/2)l, and the relative shift takes its maximum value 
when NA = at. For LIGO/Virgo (L -- 3 • 105 cm) interferometers we find 
that the corresponding frequency of the gravitational wave is v -- 3 • 104/ 
N. It is known that for L ~- 105 cm one could expect about 300 reflections 
(Douglas and Braginsky, 1979), which is sufficient for detection of continuous 
waves with 100 Hz < v < 104 Hz. The advanced LIGO interferometers are 
expected to have their optimal sensitivity at v -- 100 Hz, and rather good 
sensitivity all the way from v -- 10 Hz to v -- 500 Hz (Thorne, 1995a,b). 

If we are interested in detection of a burst of gravitational radiation with 
L < <  h (let its maximum be at the moment of time NTI2 and characteristic 
duration "r = NT), then (15) yields (A02) l/2 ~ A for N > >  1 or N = 1, where 
A is the characteristic dimensionless amplitude of the pulse. Realistic estimates 
for L and N (LIGO/Virgo) are L ~ 3 • 105 cm, 10 < N < 300, while the 
characteristic frequency is 100 Hz < v < 104 Hz. 

Measuring this effect consists of a comparison of interference patterns 
for both circular polarizations of a light beam. Similar measurements of a 
phase shift between opposite senses of circularly polarized light were per- 
formed using a nonplanar Mach-Zehnder  interferometer (Chiao et al., 1988); 
for a very clear exposition of theoretical and experimental details concerning 
the observation of phase shifts due to geometrical and topological effects, 
see Chiao (1990), without dealing with any gravitational effects. 

It is worth commenting on the order of smallness of the dimensionless 
amplitude of the gravitational wave A in connection with the limits of short 
gravitational waves. This order is most invariantly attributed to the space- 
time curvature, which is calculated using the metric tensor, see (5): Riem 
AIk 2. Thus when k --~ 0, A should also tend to zero if the curvature keeps 
its order of magnitude unchanged, and in the limit of short gravitational 
wavelengths (geometric optics in the gravitational sense) the apparent diver- 
gence of the predicted effect at small k's [see equations (17), (21)] is merely 
spurious: (A02) It2 ~ Riem kL. 

The effect-we predict in this paper makes it in principle possible to 
detect gravitational waves using not an interferometer as a whole, but only 
one of its arms, since there is a fundamental difference in propagation of the 
left and right polarizations along one and the same null line of the light. One 
has merely to separate the light of these different polarizations after it has 
returned from its travel, then transform the (circular) polarization of one of 
the resulting beams to the opposite one, and finally observe the interference 
fringes after mixing the beams. 

We think that this effect reflects an interaction between the photon's 
spin and the space-time curvature which is closely related to the well-known 
Papapetrou-Mathisson effect. 
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APPENDIX 

Here we shall obtain the formula [equation (3) in the text] 

fo'fi Vo~eb) = - R~xp~' d'r + I d'r d'r' ~)~R~p~ p + •(R 2) 
U 

Let us start with the Taylor expansion for the tetrad in a world tube 
surrounding the world line ~/of an inertial Fermi observer: 

o 3 ~ 2* 1 d e~ u3 de~) I d e ~ ) u 2  + - - ~  + " .  (AI) 
e~) = ~ + ~ u + 2~ du ------~ 3! du  3 

u is the canonical parameter along spacelike geodesics orthogonal to ~. Using 
in Fermi coordinates the equation of parallel propagation 

de~) + Ix cr i 
- -  F,,ie(J~ = 0 (A2) 
du 

we rewrite equation (A1) as 

l .ix i l _ 1 ~,~.l.pXiXtX p + . . .  + (~(R2) (A3) eV~ = ~" - ~ F~,,~X X 

The expansion of the connection coefficients is given by 

*IX i l p~ i 1 F~x = Fvx,iX + ~.. ~vx,i,lX X + " "  (A4) 

Applying equations (A3) and (A4), we obtain the following series for the 
spatial covariant derivatives of the tetrad: 

* * 1 * *Ix k I Vaie~) = F~i ,k  X k  - -  Fgv(i,k)X k q- ~ (F~.,k,t - F~ti.~.o)X X 

I * *IX k l m + 3--[ (F~'j,,t,z - F v ( i , k , l , m ) ) X  X X + ~ ( R  2 )  (A5) 

Now using the relations 

I ~IX v k  * * 
~ " v k i "  = (F~ ,k  - -  F~,',k)) X~  

2 f~p~ v k v I  * ~ "~..uki.l..X ..x = (Fv~,k..  I - -  F ~ i . k . t ) ) X k X  I 

3 ~ i x  v k v I v m  * IX * Ix k 1 ra "g",,ta,t,m~ "~ "" = (Fvi.k.l.m -- Fv(i.k,l.m))X X X 



Detection of Gravitational Radiation 2657 

one can write the expansion (A5) as 

1 . 2 ,it k I 3 ~ v k i l X k X i x m  .]_ . , .  Vo~e~) = ~ R~kiX k + ~ R~ki lX X + 4! 

n l~it, X I I X  12 . .  X tn + . . .  + (Y(R 2) + (n + 1)~ vtli'12"""ln 

It is convenient to present this series in the form 

~ dn(g~ki~ k) U n+l 
V aie~v ) = 

~=o du ~ (n + 2)(n[) 

(A6) 

1 r k = - -  R,,ik~ r d'r + (~(g 2) (A8) V aie~v) U 

Integrating by parts, we find 

fi' fo'fl It k 1 = -- - Rvik~ + 0(R 2) (A9) Vo~e~.) gl, ikgg d'r + d'r d r '  p. k 
u 

Straightforward calculation yields the following integral representation of 
equation (A7): 

o r  

Now let us calculate the temporal covariant derivative V0oe~ ). From 
equations (A2)-(A4) we easily obtain 

. l . 
Vooe~;) = F,%~X k + ~.. (F~O,k,t -- I'~k,O,l))XkX I 

1 
+ 3~ (r~o.k.,~ - F~k.o.t~)XkX~X " + "'" + C(R 2) (AIO) 

where we have" taken into account that F~o = O. Obviously, 

1 1 bit vkvtv,n V0oe~.) = k~ko x k  + ~ k~ko , t xkx  ' + ~ ,.vkO,/Xx , e x  . , x  " ] -  " ' "  

1 * x l , ,  + n"-~. R~q~ + "'" + (~(R2) (AI 1) 

d"(/~k0~k) U "+l 
Vaoe~) = ~ - -  + (~(R 2) (AI2) 

.=o du" (n + 1)! 

+ O(R 2) (A7) 
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The corresponding integral representation reads 

fo V~oeg) = - R~ok~k d'r + (~(R 2) (AI3) 

Finally one can combine equations (A9), (AI3) and write 

Voxe~) = - R~xp~ p dr  + 1_ d r  dr '  ~ R ~ p ~ '  + O(R 2) (AI4) 
u 

Noting that the transformation from arbitrary coordinate system to the 
Fermi one takes the form x ~ = A~X ~ + O(F) [or x ~ = ~ u  + O(F)], one 
can write equation (AI4) in an arbitrary coordinate system as 

I0 Vo~e~) = - /~sp(A-')gA~A~x~ p dr 

+ - d'r d r ' /~ , -p (A- t )$A~A~ ,~  p + O(R 2) (AI5) 
u 
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